Combinatorial Hopf Algebras and Generalized Dehn-sommerville Relations

نویسندگان

  • MARCELO AGUIAR
  • NANTEL BERGERON
چکیده

A combinatorial Hopf algebra is a graded connected Hopf algebra over a field k equipped with a character (multiplicative linear functional) ζ : H → k. We show that the terminal object in the category of combinatorial Hopf algebras is the algebra QSym of quasi-symmetric functions; this explains the ubiquity of quasi-symmetric functions as generating functions in combinatorics. We illustrate this with several examples. We prove that every character decomposes uniquely as a product of an even character and an odd character. Correspondingly, every combinatorial Hopf algebra (H, ζ) possesses two canonical Hopf subalgebras on which the character ζ is even (respectively, odd). The odd subalgebra is defined by certain canonical relations which we call the generalized Dehn-Sommerville relations. We show that, for H = QSym, the generalized Dehn-Sommerville relations are the Bayer-Billera relations and the odd subalgebra is the peak Hopf algebra of Stembridge. We prove that QSym is the product (in the categorical sense) of its even and odd Hopf subalgebras. We also calculate the odd subalgebras of various related combinatorial Hopf algebras: the Malvenuto-Reutenauer Hopf algebra of permutations, the Loday-Ronco Hopf algebra of planar binary trees, the Hopf algebras of symmetric functions and of non-commutative symmetric functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Faces and Bases: Dehn-sommerville Type Relations

We review several linear algebraic aspects of the DehnSommerville relations and relate redundant analogues of the f and h-vectors describing the subsets of a simplex 2 that satisfy Dehn-Sommerville type relations to integer points contained in some rational polytopes.

متن کامل

Adjunctions between Hom and Tensor as endofunctors of (bi-) module category of comodule algebras over a quasi-Hopf algebra.

For a Hopf algebra H over a commutative ring k and a left H-module V, the tensor endofunctors V k - and - kV are left adjoint to some kinds of  Hom-endofunctors of _HM. The units and counits of these adjunctions are formally trivial as in the classical case.The category of (bi-) modules over a quasi-Hopf algebra is monoidal and some generalized versions of  Hom-tensor relations have been st...

متن کامل

8 Applications of Klee ’ s Dehn - Sommerville relations

We use Klee’s Dehn-Sommerville relations and other results on face numbers of homology manifolds without boundary to (i) prove Kalai’s conjecture providing lower bounds on the f -vectors of an even-dimensional manifold with all but the middle Betti number vanishing, (ii) verify Kühnel’s conjecture that gives an upper bound on the middle Betti number of a 2k-dimensional manifold in terms of k an...

متن کامل

Applications of Klee's Dehn-Sommerville Relations

We use Klee’s Dehn-Sommerville relations and other results on face numbers of homology manifolds without boundary to (i) prove Kalai’s conjecture providing lower bounds on the f -vectors of an even-dimensional manifold with all but the middle Betti number vanishing, (ii) verify Kühnel’s conjecture that gives an upper bound on the middle Betti number of a 2k-dimensional manifold in terms of k an...

متن کامل

An Euler Relation for Valuations on Polytopes

A locally finite point set (such as the set Z of integral points) gives rise to a lattice of polytopes in Euclidean space taking vertices from the given point set. We develop the combinatorial structure of this polytope lattice and derive Euler-type relations for valuations on polytopes using the language of Mo bius inversion. In this context a new family of inversion relations is obtained, the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003